УДК 543.253

В.М. Галимова¹, В.В.Манк³, В.И.Максин¹, Т.В.Суровцева²

¹Национальный университет биоресурсов и природопользования Украины; ²Международный научно-учебный центр информационных технологий

и систем НАН и МО Украины;

³Национальный университет пищевых технологий, г. Киев, Украина

ОЦЕНКА СОСТОЯНИЯ ЗАГРЯЗНЕНИЯ ПОВЕРХНОСТНЫХ ВОД РЕК ЗАКАРПАТЬЯ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Дана оценка состояния загрязнения поверхностных вод Закарпатья тяжелыми металлами Pb(II), Cu(II), Zn(II), которые попадают преимущественно в результате техногенных аварий, антропогенной нагрузки, со стоками воды от наводнений в бассейн р. Тиса и в результате природных аномалий от таяния снегов, ливневых дождей в р. Рика за период 2005 - 2009 гг.

Ключевые слова: экологический мониторинг, тяжелые металлы, свинец, медь, цинк, поверхностные воды, электрохимический метод

Введение. В Украине сложилась сложная экологическая ситуация, при которой практически все поверхностные, а в отдельных регионах и подземные воды, по уровню загрязнения не отвечают требованиям нормативов качества источников водоснабжения [1].

Особое беспокойство вызывает состояние водоснабжения в сельской местности, поскольку лишь 26% населения пользуются услугами централизованных систем водоснабжения, а остальная часть населения для питьевых нужд используют местные источники – шахтные и трубчатые колодцы, самодельные каптажи, прирусловые копанки, а также привезенную воду [1-3]. Кроме того, в большинстве случаев сельское население вынуждено пить воду, которая не отвечает ряду показателей гигиенических требований. Это приводит не только к распространению различных заболеваний и ухудшению эпидемиологической ситуации, но и к повышению социального напряжения в сельской местности, сдерживанию в маловодных регионах страны развития хозяйственной деятельности [2-5].

Одной из экологически неблагоприятных зон является Западная Украина, которая относится к наиболее паводкоопасным регионам Европы. Большая часть территории Закарпатья является водосбором бассейна р. Тиса. Вторым водным объектом, который попадает в бассейн Тисы, является р. Рика (правый приток), протекающая в Межгорском и Хустском районах Закарпатской области. Гидрологические посты находятся возле сел Верхний Быстрый (1954 г.) и Нижний Быстрый (1956 г.), пгт. Межигорье (1946 г.), и г. Хусте (1946 г.).

Часть стоков бассейна р. Тиса формируется на румынской, венгерской и словацкой территориях неравномерно на протяжении года. 75% стока приходится на весенние и осенние паводки и только 25% — на другие периоды года [6]. Различные токсиканты, в том числе и тяжелые металлы (ТМ), попадают непосредственно в поверхностные воды бассейна р.Тисы вследствие техногенных аварий, которые регулярно происходят в Румынии, а также с неочищенными или недостаточно очищенными коммунально - бытовыми и промышленными сточными водами. Кроме того, ТМ попадают в воды р. Тиса во время наводнений за счет смыва их с загрязненных территорий и сельхозугодий, а также вследствие эрозии почв с водами малых рек.

Техногенные аварии и непредвиденные выбросы сточных вод, которые происходят ежегодно на станции очистки шламовых вод горнодобывающего предприятия SC Cartel Bau SA, г. Бая Борша (Румыния) [7, 8], являются одними из основных источников загрязнения ТМ воды р. Тиса. Вследствие этого в трансграничные воды Закарпатской области поступают аварийные выбросы тяжелых металлов – меди, железа, цинка и др. Например, в 2009 г., по данным Государственной экологической инспекции в Закарпатской области, концентрация Cu(II), Fe(III), Zn(II) в р.Тиса превышала допустимые нормы в 2 – 4 раза [9], из-за чего в течение двух недель было запрещено использование воды для питьевого и хозяйственного водоснабжения.

Бассейн р. Рика используют для гидроэнергетики (Теребле-Рицкая ГЭС) и водоснабжения. На ее берегах расположены г. Хуст и многочисленные туристические базы отдыха. На большинстве участков реки установлены конструкции для укрепления берегов, включающие оцинкованную металлическую арматуру, которая также может служить источником поступления соединений цинка в воду [9].

Существующая ныне сеть наблюдений за степенью загрязнения поверхностных вод Закарпатья ТМ не позволяет провести реальную экологическую оценку состояния бассейна воды р. Тиса, поскольку большая его часть находится за пределами Украины и имеет значительную антропогенную нагрузку.

Цель данной работы — оценка состояния загрязнения соединениями свинца, меди и цинка вод рек Тиса и Рика на основе периодического анализа вод на содержание ТМ и нормативов — предельно допустимых концентраций (ПДК) с точки зрения использования этих вод для питьевых целей, для ведения рыбного хозяйства и как поверхностных вод за период с 2005 по 2009 гг. Концентрацию ионов ТМ в воде определяли с использованием усовершенствованной методики инверсионной хронопотенциометрии [10] и анализатора солей тяжелых металлов М-ХА1000-5 [11].

Пункт гидрохимического контроля воды рек Тиса и Рика находится в г. Хусте, Закарпатье.

Методика эксперимента. Отбор проб воды проводили 4 раза в год (поквартально) согласно [12, 13]. Пробы воды р. Тиса отбирали в районе Велятинского моста, возле которого во время наводнения зачастую происходит прорыв воды р. Тиса и ее воды заливают поля и пастбища частных сельхозугодий. Такое большое наводнение произошло, например, в 2006 г.

Пробы воды р. Рика отбирали в зоне городского пляжа, под шоссейным мостом на выезде из г. Хуста. Рядом расположены буровые скважины забора питьевой воды (глубина $60-70\,\mathrm{m}$) для водоснабжения города.

Пробоподготовку воды для анализа проводили согласно разработанной нами методике, а концентрации тяжелых металлов определяли в соответствии с выбранными электрохимическими параметрами [14].

Результаты и их обсуждение. На рис. 1 приведены результаты определения концентрации Pb(II) в водах рек Тиса и Рика. С точки зрения использования воды для питьевого назначения ПДК Pb(II) - 0.01 [12], были установлены превышения ПДК и максимальные значения концентраций Pb(II) в воде р. Тиса: III и IV кварталы 2005 г. – соответственно 4,2 ПДК и 1,15 ПДК; II и III кварталы 2006 – 1,17 ПДК и 1,81 ПДК; II квартал 2008 г. – 3,2 ПДК.

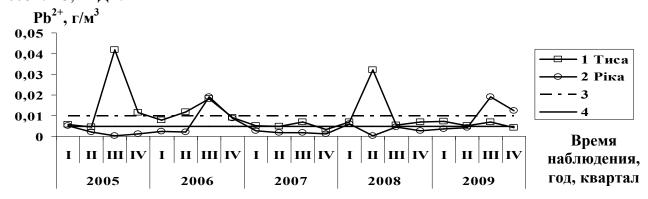


Рис 1. Содержание свинца в воде р. Тиса (1) и р. Рика (2): ПДК свинца для питьевой воды — $0,01\ \text{г/m}^3$ (3) [12]; ПДК свинца для поверхностных вод — $0,005\ \text{г/m}^3$ (4) [13] ISSN 0204-3556. Химия и технология воды, 2011, т.33, № 2

Аналогичные колебания концентраций Pb(II) в воде р. Рика наблюдали в III квартале 2006 г. – 1,2 ПДК, а также в III и IV кварталах 2009 г. – соответственно 1,9 ПДК и 1,3 ПДК. Однако концентрация Pb(II) в воде р. Тиса была значительно выше, чем в р. Рика, что, по всей видимости, связано с влиянием антропогенных нагрузок, территориальными особенностями данного региона и его геохимической структурой, а также с характером осадков. При этом превышение концентрации Pb(II) в воде р. Тиса не всегда совпадало с таковым в воде р. Рика.

Превышение уровня ПДК Cu(II) и Zn(II), который составляет 1,0 г/м 3 в водах рек Тиса и Рика не наблюдалось (рис. 2, 3).

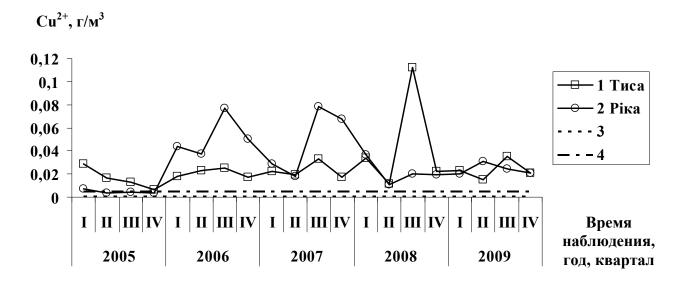


Рис 2. Содержание меди в воде рек Тиса (1) и Рика (2): ПДК меди для поверхностных вод -0.001 г/m^3 (3) [13]; ПДК меди для вод рыбохозяйственного назначения -0.005 г/m^3 (4) [15]

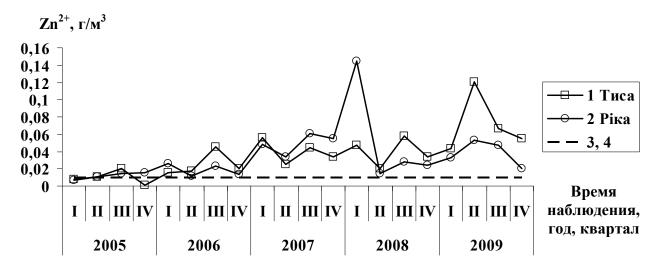


Рис 3. Содержание цинка в водах рек Тиса (1) и Рика (2): ПДК цинка для поверхностных вод $-0.01 \ \text{г/m}^3$ (3) [13]; ПДК цинка для вод рыбохозяйственного назначения $-0.01 \ \text{г/m}^3$ (4) [15]

Рассматривая нормативы ТМ для поверхностных вод, следует отметить, что они являются наиболее чувствительными по сравнению с таковыми для питьевой воды и воды рыбного хозяйства [12, 13, 15].

Что касается превышения ПДК Pb(II) в поверхностных водах р. Тиса, то отмечены их максимальные значения: 8,4 ПДК — III квартал 2005 г. и 6,4 ПДК — II квартал 2008 г. Наибольшим по сравнению с другими токсикантами было превышение ПДК Сu(II), которое составило 112 ПДК в III квартале 2008 г. Наибольшее превышение ПДК Zn(II) составляло 5,7 ПДК в III квартале 2008 г. и 12,1 ПДК во II квартале 2009 г. (см. рис. 1 — 3). Эти превышения концентраций токсикантов в воде р. Тиса совпали с авариями на горнодобывающем комбинате в Румынии.

Анализ превышения ПДК для нормативов поверхностных вод в р. Рика показал, что максимальным было загрязнение воды Pb(II): 3,8 ПДК — III квартал 2006 г.; 1,2 ПДК — I квартал 2008 г.; 3,8 ПДК — III квартал 2009 г.; 2,5 ПДК — IV квартал 2009 г.

Превышение ПДК Cu(II) в поверхностных водах р. Рика было наибольшим по сравнению с другими металлами (аналогично с р. Тиса) : 43,8 ПДК — I квартал 2006 г.; 76,8 ПДК — II квартал 2006 г.; 50,2 ПДК — IV квартал 2006 г.; 78,5 ПДК — III квартал 2007 г.; 67,8 ПДК — IV квартал 2007 г.; 31,2 ПДК — III квартал 2009 г.; 24,2 ПДК — IV квартал 2009 г.

Максимальный уровень концентрации Zn(II) в воде р. Рика в соответствии с нормативом для поверхностных вод составил: 14,5 ПДК – I квартал 2008 г.; 3,3 ПДК – I квартал 2009 г.; 5,3 ПДК – II квартал 2009 г.; 4,7 ПДК – III квартал 2009 г. Таким образом, уровень загрязнения Cu(II) и Zn(II) в р. Рика относительно норматива для поверхностных вод является более высоким по сравнению таковыми в р. Тиса.

Одна из категорий вод – вода рыбохозяйственного назначения, предполагает более чувствительные нормативы по ТМ, чем для питьевой воды, но исключение составляет ПДК Pb(II), поскольку его концентрация $(0,1\ r/m^3)$ на порядок выше, чем для воды питьевого назначения [12, 15].

На основе результатов наших анализов, превышение концентрации Pb(II) в воде рек Тисы и Рики для воды рыбохозяйственного назначения не зафиксировано.

В отношении рек Тиса и Рика превышение ПДК Сu(II) для воды рыбохозяйственного назначения было наибольшим по сравнению с другими металлами. Для р. Тиса превышение составило: 5,7 ПДК — I квартал 2005 г.; 4,5 ПДК — II и I кварталы соответственно 2006 и 2007 гг.; 6,6 ПДК — III квартал 2007 и 6,8 ПДК —I квартал 2008 г.; максимальным было 22,4 ПДК — III квартал 2008 г.

Полученные данные для р. Рика превышают нормативы ПДК Cu(II) в водах рыбохозяйственного назначения для всего исследованного периода, кроме 2005 г.

Максимальные уровни ПДК наблюдались: 15,5 ПДК – III квартал и 10,0 ПДК – IV квартал 2006 г., 15,7 ПДК и 13,7 ПДК – соответственно III квартал и IV квартал 2007 г. Уровень превышения ПДК Сu(II) в воде р. Рика значительно выше, чем ее таковой в воде р. Тиса.

По Zn(II) воды рек Тиса и Рика для рыбохозяйственных целей являются непригодными, поскольку не соответствуют нормативам.

Анализируя полученные данные по содержанию ТМ в водах рек Тиса и Рика, прежде всего необходимо отметить сезонный характер колебаний концентраций токсикантов. Максимальные значения их концентраций совпадают с погодными условиями, так как именно в это время на территории Закарпатской области наблюдались мощные ливневые дожди, которые вызывали сильные наводнения. В результате стоки воды с загрязненных территорий промышленных зон и сельскохозяйственных угодий снова попадали в русло р. Тиса, что и привело к повышенному содержанию Pb(II) в воде. При этом превышение концентрации Cu(II) и Zn(II) в воде для питьевого использования не наблюдалось.

Установлено, что концентрация Cu(II) в воде в зимний период максимальна, а летом снижается, по-видимому, вследствие активного роста биомассы. Из этого следует, что на колличество Cu(II) в воде влияют гидробионты (например, моллюски). Кроме того, концентрация Cu(II) снижается при осаждении взвешенных минеральных и органических частиц из-за их способности адсорбировать ионы меди. Последние переходят в донные отложения, что подтверждает наблюдаемый эффект. Интенсивность этого процесса зависит от скорости седиментации суспензий, т. е. косвенно от таких факторов, как природа, размеры и заряд частичек, на которых адсорбировались ионы меди.

Источники повышения содержания ТМ в водах рек Тиса и Рика различны. Так, для р. Рика, загрязнения в основном связаны с геохимической структурой пород и вымыванием ионов металлов вследствие эрозийных процессов, природными аномалиями, выпадениями осадков. Изменения концентрации ТМ в воде р. Тиса объясняются дополнительными антропогенными факторами, которые связаны с деятельностью промышленных объектов не только в Украине, но и за ее пределами. Поэтому контроль загрязнения води р. Тиса нужно проводить комплексно и регулярно, совместно с другими европейскими странами.

Проведена оценка качества воды по индексу загрязнения воды (ИЗВ), рекомендованному Госкомгидрометом Украины, позволяющему отнести поверхностные воды к семи классам качества [16].

Расчет ИЗВ проводили согласно ограниченному количеству ингредиентов по уравнению:

ИЗВ =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{C_i}{\Pi Д K_i},$$

В соответствии с рассчитанными значениями ИЗВ для каждого типа вод рек Тиса и Рика (питьевой, поверхностной и для рыбохозяйственного назначения) определяются классы качества воды (рис. 4-6) [16].

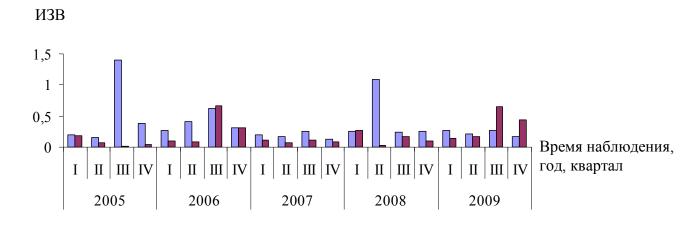


Рис 4. Рассчитанный индекс загрязнения воды рек Тиса (□) и Рика (□) с учетом ПДК для питьевой воды

Как видно из рис. 4, для питьевой воды р. Тиса максимальные значения ИЗВ отмечены в IV квартале 2005 г., II и III кварталах 2006 г. (вода II класса — чистая); в III квартале 2005 и II квартале 2008 гг. (вода III класса — умеренно загрязнена). Что касается р. Рика, то с учетом ИЗВ вода в III и IV кварталах 2006 и 2009 гг. относится к II классу качества (вода чистая), а в остальные периоды времени — относится к I классу качества (вода очень чистая).

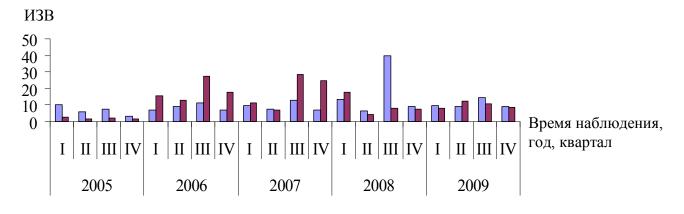


Рис 5. Рассчитанный индекс загрязнения вод рек Тиса (\square) и Рика (\square) с учетом ПДК для поверхностных вод

Для поверхностной воды р. Тиса (см. рис.5), максимальные значения ИЗВ отмечены в I квартале 2005 г., II квартале 2006 г., I квартале 2007 г., III квартале 2007 г., I квартале 2008 г., III квартале 2008 г. (вода VII класса — чрезмерно загрязнена, с нарушением экологических параметров, состояние которых оценивается как экологический регресс (ИЗВ>10)).

Аналогичные заключения можно сделать и для оценки поверхностных вод р. Рика: в I-IV кварталах 2006 г.; I, III, IV кварталах 2007 г.; I квартале 2008 г. и II квартале 2009 г. вода относится к VII классу качества.

Максимальные значения ИЗВ для воды рыбохозяйственного назначения (см. рис. 6), р. Тиса зафиксированы в I квартале 2005 г.; II квартале 2006 г.; I и III кварталах 2007 г.; I и III кварталах 2008 г.; III квартале 2009 г. (вода VII класса – чрезмерно загрязнена (ИЗВ>10)).

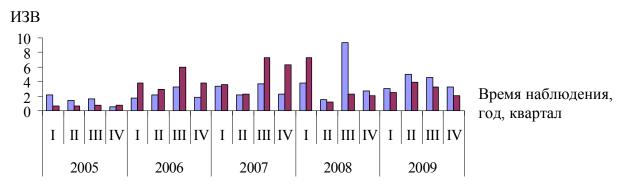


Рис 6. Рассчитанный индекс загрязнения воды рек Тиса (□) и Рика (□) с учетом ПДК для вод рыбохозяйственного назначения

Максимальные значения ИЗВ для воды рыбохозяйственного назначения р. Рика отмечены в IV квартале 2007 г.; I квартале 2008 г.; II квартале 2009 г. (вода VI класса – очень загрязнена). При этом самая чистая вода была в I – IV кварталах 2005г. (вода II класса – умеренно чистая).

Выводы. Таким образом, на основе проведенных исследований можно отметить следующие закономерности:

- наблюдаются периодические (сезонные) колебания уровня загрязнения ТМ вод рек Тиса и Рика, которые вызваны в основном наводнениями и действием антропогенных факторов для р. Тиса и природными осадками, эрозионными процессами для р. Рика;
- максимумы уровня загрязнения соединениями ТМ вод р. Тиса совпадают с техногенными авариями на горнодобывающем предприятии SC Cartel Bau SA, г. Бая Борша (Румыния), сточные воды которого попадают в бассейн этой реки;
- в период наводнений и техногенных аварий вода р. Тиса становится непригодной для употребления населением и ведения фермерского хозяйства;

- вода рек Рика и Тиса, согласно нормативам по Cu(II) и Zn(II), не пригодна для ведения рыбного хозяйства;
- интегральный вынос ТМ с поверхостными водами рек Закарпатья за период с 2005 по 2009 гг. показал, что уровень токсикантов в воде р. Тиса значительно превышает их уровень в воде р. Рика. При этом вследствие антропогенной нагрузки концентрация ТМ повисилась почти в три раза для р. Тиса и в пять раз для р. Рика, что приводит к отрицательным последствиям и экологической опасности.

Резюме. Дана оцінка стану забруднення поверхневих вод Закарпаття важкими металами Pb, Cu, Zn, які надходять у басейни річок внаслідок техногенних аварій, антропогенного навантаження в басейн для р. Тиса та природних повіней, що стаються внаслідок танення снігу, зливових дощів для р. Ріка за період 2005 – 2009 рр.

V.M. Galimova, V.V. Mank, V.I. Maksin, T.V. Surovtseva

ASSESSMENT OF THE STATE OF POLLUTION OF THE WATERS OF THE TRANSCARPATHIAN RIVERS WITH HEAVY METALS

Summary

The paper has given an assessment of the state of pollution of the Transcarpathian surface waters with heavy metals Pb(II), Cu(II), and Zn(II), which penetrate as a result of technogenic disasters, anthropogenic loads, with runoffs from floods in the basin of the Tisa River and as a result of natural anomalies caused by snow melting, shower rains in the Rika River over the period 2005–2009.

Список использованной литературы

- [1] *Национальный доклад* о качестве питьевой воды и состояние питьевого водоснабжения в Украине в 2005 году. К., 2006. 311 с.
- [2] *Основные показатели* использования вод в Украине за 2005 год К.: Держводгосп, 2006. Вип. 25. 72 с.
- [3] http://www.nbuv.gov.ua/e-Journals/nd/2007-3/07mnacws.pdf1.
- [4] Гончарук В.В., Чернявская А.П., Жукинский В.Н., Скубченко В.Ф. // Экологические аспекты современных технологий охраны водной среды. Киев.: Науч. мысль, 2005. С. 5-64.

АНАЛИТИЧЕСКАЯ ХИМИЯ ВОДЫ

- [5] *Гончарук В.В.* Экологические аспекты современных технологий охраны водной среды. Киев: Наук. думка, 2005. 399 с.
- [6] http://revolution.allbest.ru/geology.
- [7] http://www.rg.ru/2009/04/20/sobkor-voda-anons.html.
- [8] http://www.versii.com/news/177603/ издание "Украинская правда".
- [9] http://www.nbuv.gov.ua/portal/natural/Popu/2003 2/5/5-3.pdf.
- [10] Галимова В.М., Манк В.В., Суровцев И.В. и др. // Химия и технология воды. 2009. 31, № 6. С. 677 687.
- [11] *Галімова В.М., Манк В.В., Суровцев И.В. и др.* // Науково-методична розробка. К.: НУБіП, 2008. 26 с.
- [12] *ДСанПИН 2.2.4-171-10*. Державні санітарні норми і правила "Гігієнічні вимоги до води питної, призначеної для споживання людиною." Наказ МОЗ України від 12.05.2010 № 400.
- [13] *ДСТУ 4808:2007*. Джерела централізованого питного водопостачання. Гігієнічні та екологічні вимоги щодо якості води і правила вибирання. К.: Держспоживстандарт України, 2007. 36 с.
- [14] *Карнаухов О.И., Копілевич В.А., Галімова В.М., Войтенко Л. В. //* Науково-методична розробка. К.: Нац. аграр. ун-т, 2003. 31 с.
- [15] *Перечень* рыбохозяйственных нормативов: предельно допустимых концентраций (ПДК) и ориентировочно безопасных уровней воздействия (ОБУВ) вредных веществ для водных объектов, имеющих рыбохозяйственное значение. М.: Изд-во ВНИРО, 1999. 304 с.
- [16] Сніжко С. І. Оцінка та прогнозування якості природних вод. К., 2001. 264 с.